STABLE ERUILIBRIA IN A SCALAR PARABOLIC EQUATION
YARIABLE DIFFUSION.. (U)> BROWN UNIV PROYIDENCE RI
LEFSCHETZ CENTER FOR DYNAMICAL SYSTE.. G FUSCO ET AL
F/G 12/1 . NL

AD-A131 221

UNCLASSIFIED 25 MAR 83 LCDS-83-18 AFOSR-TR-83-8673




o
E

EEEEEEE

re
=
N i
(o2 | L

4
F
Fe

e

T

)
»n

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.
'
.

L.

r r
s

Yy v
. . .

MY -0 S

- v

."‘k T

v

P

T .,

SRR LY
2232 12 3a Lo




Lefschetz Center for Dynamical Systems




T T T
e D R R

&

v

; STABLE EQUILIBRIA IN A SCALAR PARABOLIC EQUATION
' WITH VARIABLE DIFFUSION

by

G. Fusco and J. K. Hale

March 25, 1983 LCDS Report #83-10

-
. AIR FORCE OFFICE OF SCIENTIFICRE %
SEARM 7 LwQny
NOTICE OF TRANSMI TTAL TO DTIC ‘
_‘ This technical report has been revigwed and is ’
approvodrorpublicreleaseIAWAFRIQO-EZ. -
Distribution is unlimited. N
MATTHER J. KERPER 3
R -~
' Chier, Technical Informatiocn Diviagen ~
a8
~3

........




| amgc e abmes gih aai e a et 3 di T dt U WL SRS SN S B

» ML LR -
e ey n'\'cl\!\' . "~ eyt IO L RACNICOLICAAEREN Ul A P
UNCLASSIFIED: -~ «+: e oorienive o v o . B Ok i e o

P TWIFORT NUMDER . 2 GONT ACCERSION NO | 3 Ity AV A G T te
. | AFOSR-TR. 83- 0673
4. TITLE (and Subtttle) , 4 S TYPC OF HEPURT & PIINOD COVFRIQ
! STABLE EQUILIBRIA IN A SCALAR PARABOLIC
EQUATION WITH VARIABLE DIFFUSION Technical
6. PERFORMING 034G, RLWORT tigmutin- |
7. AU ro;oa(-) 0. CONTRACT OR GRANT NUMBE (%)
\ Jack K. Hale § G. Fusco AFOSR 81-0198
. 9. PEWFORMING OHGANIZATION NAME AND ADDRLSS TS R i'v?..T?,’%z'ls‘,;ﬁ‘{._'F'Y’j‘r‘,{._'.”‘
p Lefschetz Center for Dynamical Systems ARLA & WOMR UNIT NUMDIL 1S
‘ - Brown University, Applied Mathematics
. Providence, RI 02912 ‘ PE61102F; 2304/A4
:."3 11, CONTROLLING OFFICE NAME AND ADDRESS 12. RLPORT DATE

March 1983
Air Force Office of Scientific Research M ’T;“T*.T{a".§ T
Bolling AFB, Washington, D.C. 20332 T NUMELE O PGS

. T4, MONITORING AGENCY NAME & ADDRESS({] diffetont from Cantrolling Ollice) | V5. SLCURITY CLASY. raf fhis repmen)
nd . : UNCLASSIFIED

e . .

s ’ . NEa T CL T TTEATICHT DO W GRAC G
b sCHE DUl

16. DISTRIBUTION STATEMENT (of this Reporl)

Approved for
publie r X3
distridution unl mit::?a” '

7. DISTRIBUTION STATEM&PJT (of the nbstract entered in Rinrk 20, i ditlerent from Kepoet)

18. SUPPLEMENTARY NOTES

19. REY WORODS (Continue on revoerse gide if necessary and ideatlfy by block numbher) ,

] ~_ LD. ABSTRACT (Continue on raversa side il necaxsary and ldentitv h.s- hach nn;'-l::{)
' 1) A scalar parabolic equation with nonconstant diffusion and nonlinear source

term is considered and some aspects of the influence of changing the

: diffusion on existence, stability and bifurcation properties of the : '

-\ equilibria are ‘discussed. '

FOnnp
DD ,jan 73 1473 eoiTion oF 1 NOV 6515 OBSOLETE unclassified '

v
o
N SECURITY CLASSIFICATION OF THIS BAGT (1l (ata e red)
w




g SN At L SO e S AL SISl RN E

1

i i

'O S Rt
PR

o AR

STABLE EQUILIBRIA IN A SCALAR PARABOLIC EQUATION

WITH VARIABLE DIFFUSION

by

G. Fusco and J. K. Hale' ; usa;,;wf

Lefschetz Center for Dynamical Systems<<.: .

Division of Applied Mathematics , -
Brown University £

Providence, Rhode Island 02912,£1gy;;?fﬂj

March 25, 1983

« T — .
This research has been supported in part by the Air Force Office of A
g Scientific Research under contract 4#F-AFOSR 81-0198, in part by the

National Science Foundation under contract #MCS8205355 and in part by
the U.S. Army Research Office under contract #DAAG-29-79-C-0161.

Visiting from Universita Degli Studi di Roma, Facolta d'Ingegneria,
Istituto di Matematica Applicata, 00161 Roma, Italy.

Research supported in part by C.N.R., NATO Senior Fcllowships Scheme
(Bando n. 217.14).

s




STABLE EQUILIBRIA IN A SCALAR PARABOLIC EQUATION
WITH VARIABLE DIFFUSION

by

i A o 0 ca
N ORI

G. Fusco and J. K. Hale

5
.

" Abstract

3 -l"‘v"'_'," I ""). u‘

- A scalar parabolic equation with nonconstant diffusion and nonlinear
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ing the diffusion on existence, stability and bifurcation properties
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1. Introduction

We deal with existence stability and bifurcation properties of equi-

libria of the problem

u, = (cux)x + f(u), x € (-1,1)
1)
ux(-l,t) = ux(l,t) =0

. . . . 1
where ¢ > 0 is a continuous function and f is C".

Ta The initial value problem for (1) is well posed in the Sobolev space
Hl(-l,l),[l],and any bounded orbit approaches an equilibrium as t + » ([3],
[51,{7]). Therefore a basic problem in understanding the dynamic of (1) is
the description of the set of equilibria of (1) and of the way this set
changes with the diffusion function ¢ and with the source term f. Related
important problems are the characterization of the pairs (c,f) such that
(1) has stable nonconstant equilibria and to understand the role of bifurca-
tion in the appearance of stable equilibria.

For any nonlinear function f, Chafee [6] proved that when ¢ is con-
stant, no stable nonconstant equilibrium exists. Chafee's result was generaliz-
ed by Hale and Chipot [2] that showed that the same result holds true if
c € C2 and c__ < 0. Finally, Yanagida [10] has shown that if ¢ 1is written

XX

2 . s X
as c¢c=a", a>0 a necessary and sufficient condition for the nonexistence

. of a function f such that (1) has a stable nonconstant equilibrium is that
tgé a s 0. Other results concerning the existence of stable nonconstant equili-
i bria are due to Matano ([7],[9]) that has shown that, if f is a cubic poly-
éi nomial as f = u - u3 and c(x) > 1 on intervals [-1,a],[B,1] and < e
E
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on [y,8] a<y<&8§<B8 and € is sufficiently small, then (1) has a
stable nonconstant'equilibrium. Fife and Peletier [13] have also considered
equations related to (1) which have stable nonconstant equilibria.

For the n dimensional version of problem (1) in a bounded domain Q
and with constant diffusion, Casten and Holland [11] and Matano [8] have
shown that if Q is convex,any stable equilibrium must be a constant.
Matano has also shown that, assuming f of the type f = u - u3, for some
nonconvex domains, there exist stable nonconstant equilibria. Hale and Vegas
[4] have shown the existence of stable nonconstant equilibria for a large
class of nonlinearities and for domains QE that can be considered as pertur-

bations of a domain Q. which is the union of two disjoint convex domains.

0
We assume that ¢ 1is even and f is odd and such that

f(0) = f(1) = O

f(u) >0 for u€ (0,1)
(2)
f(u) <0 for u€ (1,»),

£1(0) £ 0, £(1)#0.

(see fig. 1.)
Under these assumptions we give an estimate of the number of equilibria
of (1) in terms of ¢ and f. We prove that for any f of type (2), if ¢

is sufficiently close to the step function

1 for x € [-1,2] U [&,1],
3 ¢ =

c,>0 for x€ (-2,8), 0< 2 <1

0

and o is sufficiently small, problem (1) has at least a pair of stable non-

constant odd monotone equilibria. Finally, we show that if ¢ = < depends on
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a parameter u € [0,1] and uu is an equilibrium of (1) with exactly k
zeros that bifurcates at p = 0 from the zero equilibrium and becomes stable
at py=1]1 thenas u goes from 0 to 1, u“ must go through at least k
secondary bifurcations.
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2. Existence

We are interested in studying problem (1) for c¢ in the set ¥ of
continuous and positive functions c: [-1,1] + R. Nevertheless, for the
analysis that follows, in particular for the discussion of stability where
we consider function c¢ that are 'close" to the step function ; defined
by (3), it is convenient to study problem (1) for a wider class of diffusion
functions c¢ that are allowed to have jump discontinuities at a finite
number of fixed points in [-1,1]. To keep the notation simple and since we
suppose ¢ even, we consider only the case of two points of discontinuity
at x = %%, 0 < 2 < 1. Everything we say extends to the case of any number
of points of discontinuity.

Let 2? be the set of nonnegative even functions c¢: [-1,1] - R which
have continuous restrictions to [0,2) and to [2,1] and possess the left

limit c(2) of c(x) as x-+ 2. For any c efe’ let JccR2 be the set

def def
Jc = =

{(,y)|x=12, y € [c(27),c(2)]} and C J. U graph c. We sup-

pose that ¥ is endowed with the topology associated with the following
notion of convergence that allows a sequence of continuous functions to con-
verge to a function that has a jump at x = #2: we say that n €y,

~

n=1,..., converges to c € ¥ if and only if Cn converges to C in the

sense of Hausdorff as n -+ o,

The class of diffusion function that we are going to consider is the
subset 2’ c¥ defined by the condition inf ¢ > 0. Clearly, ¥ is a dense
subset of et and if we assume in ¥ the topology of uniform convergence in

[-1,1], then ¥ is continuously embedded in ﬁ£+. Henceforth we allow ¢ in




.................................

problem (1) to be a generic c¢ 652*. This requires that (1) be complemented

with the jump conditions
+ + - -
c(x2 )ux(ﬂ. ) = c(22 )ux(ﬂ. ),
therefore the equilibrium problem corresponding to (1) becomes

(cux)x + f(u) = 0
@) u (-1) = u (1) = 0
" c(i£+)ux(¢z+) = c(xtu (#27),

and reduces to the standard problem for c € ¥.

By letting u=u, v = cu,, problem (4) transforms in the equivalent

system
u =23,
X C
5) v, = -f(u),
v(-1) = v(1) = 0.

Note that the jump conditions express just continuity of v at x = %
and therefore they are included in the requirement that u,v be continuous
. in [-1,1].
- The hypothesis on f and a maximum principle argument imply that

. solutions of (4) or (5) satisfy -1 < u(x) <1, therefore we can also

assume that f is bounded so that the solution u(c,a,x), v(c,a,x) of the

initial value problem

..................
.............

''''''''
........

..........
........
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(6) v, = -f(u),

X

u(-1) = a, v(-1) = 0

. A ABRAAIAIRY X

is defined for all (c,a,x) € &E* x [-1,1] x [-1,1].

Lemma 1. wu(c,a,x), v(c,a,x) are continuous functions of (c,a) uniformly

in x and possess a continuous first derivative with respect to a and

e -1[_ S

also with respect to x except possibly at x = 4.

The proof of this lemma is a standard application of the general theory a

of differential equations. {

To discuss the existence of space dependent equilibria of (1), i.e.,

the existence of nonconstant solutions of (4), we note that these solutions
are in one to one correspondence with the a # -1,0,1 such that v(c,a,l) = 0.
If, for a # 0, we let §(c,a,x) be the angle (positive clockwise around

x 1in space wu,v,x) swept by the vector ﬁ(c,a,x') defined by

u(c,a,x')
ﬁ(c,a,x') = | v(c,a,x") ,

0

when x' goes from -1 to x, then a necessary and sufficient condition

in order that v(c,a,l1) = 0 for some a # -1,0,1 is that &(c,a,1) be -

equal to ntk  for some integer k ¥ 0.

o
E
-
-9

A

The angle §&(c,a,x) can be defined also for a = 0 so that &(c,a,x)

’

is continuous in (c,a,x). In fact by performing the polar coordinate trans-

’
9
)
]
’
)
'
'
—— x'n'ﬂ.
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formation u=p cos §, v=-p sin § it is found that 6(c,a,*) is the

solution of the problem

6 = —1- Sin26 + M COSZG,

x c(x) u(c,a,x)
(7N
§(-1) = 0.

Moreover, since by lemma 1, u(c,a,x) is continuous in (c,a) uniformly
in x and u(c,0,x) = 0, it follows that if (c',a) converges to (c,0)
in €' x [-1,1], f(u(c',a,x))/u(c',a,x) converges uniformly to £f'(0) in

[-1,1]. This implies that as (c¢',a) + (c,0), &(c',a,x) converges

uniformly to the solution §(c,0,¢) of the problem

Gx = cgi) sin26 + f'(O)coszé,
(8)
00

§(-1) =

From (7),(8) and lemma 1 it also follows that 6(c,a,x) is continuously
differentiable with respect to a. We also note that &(c,tl1,x) = 0 and
that, for a € (1,1), §(c,a,x) 1is an increasing function of x because
the right hand sides of (7),(8) are > 0.

For later use we also introduce the angle o(c,a,x) which is defined
as 6(a,x) with the vector 3(é,a,x) replaced by its derivative 3a(c,a,x)
with respect to a. It may be useful to note that, if I is the surface

in the space of u,v,x defingd by the solutions of (6), then ﬁa(c,a,x) is

tangent to the cross section of I at x at the point (u(c,a,x), v(c,a,x),x)

(see fig. 2).
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a(c,a,x)

Fig. 2

It is easily seen that o(c,a,*) 1is the solution of the problem

D Sy 2
9% ¢ Sino ¢ £' (u(c,a,x))cos"a,

9)
g(-1) = 0.
Now consider an interval [-2,2]c[-1,1] and let ¢ be the supremum

of c(x) in [-2,2]. Then for x € [-2,2] (8) implies

(10) 5. > —— sin’6 + £'(0)cos’s.

X

o1

Since a simple computation shows that the solutions of (10) with the equality
sign increase of 7 each time that x increases of w(f'(O)/E)'l/z, from
(10) and the fact that 6&(c,a,x) is a nondecreasing function of x, it
follows that

c

T 1/2
]
§(c,a,1) > n. Integer part of [3%(%_&9%) ]

This estimate together with the continuity of ¢(c,-,1) and the fact that

. et et
T Y o T S T R Y
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§(c,x1,1) = 0 imply

Theorem 1. The number N of nonconstant equilibria of (1) satisfies the

condition

- £1(0) 1/2
1y N > 2. Integer part of - — .

Cc

Remark. In the proof of theorem 1. no use was made of the eveness of ¢
and oddness of f. Thus theorem 1. holds for generic c¢,f. We also note
that the conclusion of theorem 1. is also true if [-2,%2] is replaced by a
measurable set Ec [-1,1] of measure 2%.

Let s, = {al6(c,a,1) = kn}. The set s can be identified with the

set of equilibria of (1) that have exactly k zeros. If the right hand side

of (12) is > 2k, then Sk is nonempty and by mean of equation (7) it is

possible to obtain some information on the ''shape'" of equilibria. To this aim
let 0<u <1 and a€ s, be given and F < [-1,1] be the set where
|u(a,x)| < u. To get a bound for the measure of F N (-%,2) we let (xl,xz)

be the smallest interval containing # N (-2 2), L = x, - x, its length, and

2 1

lm?n__f (u)/u, then by applying to (7) the same procedure used for deriving
u|<u

» (10) from (8) we obtain

— def
'n =

: s> Lsin’s+ neos’s , xe€Fn (LD
Cc

and therefore, since 6(c,a,x) is an increasing function of x,

6(c,a,x,)
2 ds

L < .
sin26+ﬁc0526

- G(C,a,xl)

1
c

....................
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From this estimate it follows ‘

12) L < kn(é)m
n

because 6(c,a,x2) - 6(c,a,x1) < kv, The estimate (12) shows that

inf{|u(c,a,x)|} converges in measure to 1 in (-2,2) as c =+ 0.
a€s
k

For k # 1 nothing can be said on the behavior of solutions in Sk outside

the interval (-2,2) and solutions in Sk could be almost trivial in the

sense that they could be near zero outside (-£,%2) and oscillate in (-%,

).
This can not happen when k = 1 because solutions in s, are monotone and
therefore if there is a point x € (-2,%) where |u(c,a,x)| is near 1 the
same is true in [-1,X] or in [x,1].

In what follows we are interested in solutions of (4) that are odd
functions of x. It is easily seenAthat, due to the assumption that c¢ is
even and f 1is odd, when on the basis of (11) it is possible to conclude

that s1 is nonempty, then it also contains at least a pair of odd solutions

that transform in each other under the transformation x -+ -x. Clearly, if

(SRS

u(c,a,*) is one of these odd solutions, and |u(c,a,x)*1] < ¢ in [-1,X]

[ LR | ?
"_‘L‘.‘,{ )

be

then |u(c,a,x)tl| < ¢ in [-x,1]. Therefore on the basis of (12) we have

Theorem 2. For any c¢ such that the right hand side of (11) is > 2, problem

(1) has an equilibrium which is an odd and increasing function of x. If ¢

is deformed so that c -+ 0, then all odd increasing equilibria of (1) converge

to the function

-1 for x € [-1,0)
Z = 0 for x=0

1 for x € (0,1]
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and the convergence is uniform in compact sets in [-1,0) U (0,1].

In the statement of theorem 2. and in the following, we always refer
to the increasing equilibrium, with it being understood that there is also
a decreasing equilibrium that transforms into the other one under the trans-

formation x > -x.

3. Stability.
Let ¢ €% be the function defined by

1 x € [-1,-2) U (2,11,

0 X € (-1,2).
In this section we prove the following

Theorem 3. Let f be a continuously differentiable odd function that

satisfies (2). Then there is a set Wc ¥ such that

(i) W is open and connected in ¥

(ii) Eo belongs to the closure of W in i?

(iii) for any c € W problem (1) has an odd increasing (and an odd

decreasing) equilibrium which is stable.

Note that theorem 3. implies

Corollary. For any odd Cl-function f that satisfies (2) there is.a

¢ € ¥ such that problem (1) has a stable nonconstant equilibrium.

To prove theorem 3. we need a few lemmas.
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Lemma 2. If wu(c,a,:) 1is an equilibrium of (1) and ) 1is the first eigen-

.......

value of the linear problem

(cwx)x + f'(u(c,a,x))w = Aw,
(13) W (-1) = w (1) = 0

c(:z+)wx(zz+) = c(tz')wx(tz+),
then u(c,a,*) 1is stable if X < 0, unstable if A > 0.
The proof of this lemma is given in [1].

Lenmma 3. Let ¥ c%’ be the set of functions c such that (1) has a

stable nonconstant equilibrium the stability of which can be ascertained by

the fact that the largest eigenvalue of the linear problem (13) is negative.

Then & is open in j§+.
Proof. If & is empty, the lemma is obvious. Therefore we assume that $>
is nonempty. Then there exist c € ¥, a € (-1,1) ~ {0} and k > 0 such

that

8§(c,a,1) = km,

and the largest eigenvalue ) of problem (13) is negative. If one lets

W=TCOSV, cwx = -r sin v in equation (13), it is found that r,v satisfy

(14) r = sin vcos v (f' (u(c,a,x)) - c€¥) - A)r,
_ 1 . 2 2
(15) Y = Too Sint v+ (f' (u(c,a,x))-A)cos Vv,

with the boundary conditions v(-1) = 0, v(1) = inr for some integer 1.

------

o AT e e, e
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But i must be zero because the eigenfunction w corresponding to the
largest eigenvalue never vanishes and therefore v must stay in the interval
(-n/2,7/2). Since A 1is negative, for v = g, the right hand side of (9) is §
always smaller than the right hand side of (15); therefore, we have

o(c,a,l) < v(l) = 0. On the other hand, equation (9) implies o¢(c,a,x) > - %.

It follows that sin(6(c,a,l) - o(c,a,l)) # 0. Since the derivative of §

P NN P

with respect to a is related to ¢ by

2.2
p Sy .2
(16) 555 = sin"(§-0)
p 83%0,

L et

o

it results 5a(c,a,1) # 0. Then the lemma fol%ows by the implicit function

theorem.

Remark. Lemma 3 is actually a special case of a general situation. In fact,

MR L Lokt ol R s

the largest eigenvalue being negative for an equilibrium point uys implies
the semigroup generated by the linear variational equation is exponentially

asymptotically stable. Thus, small perturbation in ¢ will yield another

My 4 VR

equilibrium point near u_, also has the largest eigenvalue negative and it

0
will be stable.

In the proof of lemma 3, we have seen that o(c,a,1) < 0 is a necessary
condition for A to be negative. We note that this condition is also suf-
ficient. This follows from the fact the solution of (15) depends continuously

B on A, coincides with o(c,a,:) for A = 0, and increases unboundedly as
A>-o for x # -1, Therefore, if o(c,a,1) is negative, there exists a
; unique negative Ao such that the solution of (15) vanishes at 1. Then,

if r(-) is any non zero solution of (14), w(-:) = r(.)cosv(+) is an eigen-
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function of (13) that does not vanish in (-1,1]. Thus Ao < 0 is the

largest eigenvalue of (13). Therefore, we can state

Proposition 1. A necessary and sufficient condition in order that the

largest eigenvalue of problem (13) be negative is that o(c,a,1) be

negative.

Lemma 4. Let E GjE* be a function of type (3) and (1)E be problem (1)

with ¢ = c. Then if o is sufficiently small, problem (1). has an odd
— —_ c T

increasing equilibrium u(E,a,-) such that the largest eigenvalue of the

corresponding linear problem (13); is negative.

2
Proof. By theorem 1, if o < 5%r £'(0) there exists an a € (-1,1) ~ {0}
n

such that u(E,;,-) is an increasing equilibrium of (1)5. The same condition
together with the evenness of c¢ and the oddness of f ensure that ; can
also be chosen so that u(5,5,°) is an odd function. To prove that the
largest eigenvalue of the linearized problem at u(E,;,-) is negative if o
is sufficiently small, we recall [12] that the eigenvalues of (13) do not
decrease if f£'(u(c,a,x)) is replaced by a function q(x) > f'(u(c,a,x)). It

follows that, if we let q = max_ f'(u(c,a,r)), it suffices to show that
wu(c,a,l)

for o small, the largest eigenvalue of
[ Ve W , x € (-1,-2) U (2,1)
a7 ‘ - -
CoVxx * f'(u(c,a,x))w = Aw, x € (-&,)
4
wx(-l) = wx(l) =0
(18) { e (-£1) = w (-20),
+ -
; wx(l ) = cowx(l )

is negative.

P

Al a fam
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From a result of Yanagida [10], it follows that the largest eigen-
value of this problem is negative if there is a strictly positive function

LA that makes the left hand sides of (17) equal to zero, satisfies the last

two equations (18) and moreover, is such that

(19) wox(-l) <0, w0x(l) > 0.

0
consider only the interval ([0,1]. Since f'(1) < 0 and by theorem 2,

3
3
F. We look for an even such w, and therefore, we assume wox(O) =0 and

. u(c,a,t) + 1 as co* 0, q is negative for small value of Cor Therefore,
“a if %o exists, in the interval. [¢,1], it must have the expression
(20) Wo(x) = A sinh [(-0)?(x-0)] + B cosh [(-DY2(x-0)],

and the coefficients A,B must satisfy the conditions

(21) A>o, §-> - tanh [(-Y?(1-2)]

ensuring that wo(x) is positive in [#,1] and wox(l) > 0.

To compute wo(x) in the interval (0,2], we must solve the problem

g -~ .
b Co%oxx * f'(u(c,a,x))w0 = 0, x € (0,2),
: (22)

w0(0) = C, "0x(°) = 0,

where C is a positive constant to be chosen later.

From now on we set for simplicity u= u(E,i,-),'ﬁ = ﬁ(l), u = ﬁ(l). In order
to solve this problem we must overcome the difficulty lying in the fact that

u is only known to be an odd increasing solution of problem (4)5. To this

PN \ <)
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o

end we observe that since u is increasing, we can perform the change of
def

It UGN E .

variable x = ﬁ'l(u) E(u). By making this change of variable in (4);
and by observing that the oddness of u implies E£(0) = 0, we see that

£ satisfies

¢, >—+ f(u) = 0 u € (0,u),
g ]
(23) ‘ - -
- 22—+ f(u) =0 u € (0,u),
; ged
£(0) = 0 , £u) = g,

(24)

lim g(u) = 1, lim £'(u) = =, -

u u+u
By using the fact that é§v= E%-5%3 one sees that the same change of variables

applied to (22) yields

Co 5" ' -
—g—'—z- wo - COE—'—z Wo + f'W = 0, u € (oiu)’
(25)

wo(0) = C, wa(O) =0,

where Yo has been identified with the function wo(s(—)). From (23) it

follows that, for u € (0,u)

c )| i
-112 = ZI f(s)ds + K def gu),
g' u )
1 - -
where K > -ZI_ f(s)ds is an integration constant that together with u,u
u

satisfies the conditions

T T e e R N T LT s Tt N
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u
~ —= du =1 -,
u (2[ £(s)ds) /2
(26) "
_ u
cog(u) = ZI_ f(s)ds,
u
which correspond to the last two conditions (24). Sinc g' = -2f and the

L]

first equation (23) implies that the coefficient of L

in equation (25)
is equal to -f, equation (25) becomes
gw'(; - fw(', + flw, = (gw;, + fwo)' = 0.
Thus gw; + fwo = const = 0 because w;(O) =0 and f£f(0) = 0.
It follows that, with a proper choice of the constant C appearing

in (25),

(27) Wy = gl/z, (for u € [0,u]).

If the expressions (20)(27) are patched together at x = & (corresponding

to u = u) by imposing the conditions
2y = w (0" @' = cw @
wo( ) wo( )’ wox ) - co O0x ))

it is found that

A= @g@? , B=c)? f'LE‘;W? .
-q

(

Therefore, it follows that if

1/2

c
0
(28) =
o2

f(u)
@)’

75 < tanh ((DY20-0],

R P R R SR SN S
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then w, satisfies all the conditions ensuring that the largest eigenvalue

0
of problem (17)(18) is negative. We shall prove that this is the case for

c, sufficiently small. The proof is a discussion of the asymptotic depen-

0

dence of u,g(u) on c, defined by equations (26) for ¢, - O.

0 0

By the change of variables u = u + (fl-u)r, s = u + (u-u)og, the

first of equations (26) transforms as

T ST _ -1/2
(29) ;1-175 JO(I_T) I/Z(J £(+8(x,0)) (T-a+(1-r)o)do) dt =1 - ¢,

0 $(t,0)
where

§(1,0) = -[(1-u) + (u-w)(l-1)(1-0)],

ot

“u 3.

]
1

e
=3

As u,u, also & and a depend on ¢ Let o = limosup a. Since

0. c >
u+1,u>1 as ¢, + 0, the above expression of ~ §(1,0) implies that

§(t,0) > 0 uniformly as o 0. Therefore, f(1) = 0 implies that the
ratio f(1+8(t,0))/8(t,0) converges uniformly to f'(1) # 0. This and
equation (29) imply o < =,

We also have

cn
[=4 1]

(30) lim inf —— I_ f(s)ds = 1lim inf —_1_2 J_ fis_)_d; -
¢+ 0 (I-w" ‘u c,» 0 a°du (u-u
0
1 -
lim inf j—z- [ M'LQ)_ (‘t-;)dr,
o * 0 a 0 5' (1)
B e S T Ty e T e e o s e e N
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with 3'(1) = (u-1) + (-u)t. Since T'(1) + 0 uniformly as c,+ 0,
the ratio £(1+3'(1))/8'(x) » £'(1) < 0 uniformly as o 0. From this
and the fact that a is > 1, it follows
1 [} £(1+8' (1)) . = 1 1
(31) lim inf :Z'J — (t-a)dr > -f'(l)J (1-t)dt = - 7!"(1).
c,*0 a“ /o 51 (1) 0 ,
o -
Equations (30) (31) and the second condition (26) imply
¢, (u)
. (32) 1lim inf -3 2 -f'(1).
. o + 0 (1-u)
Therefore, by taking into account that 1lim q = f'(1), we obtain
c >0
0
1/2, —
c f(u) - -,
. 0 - 1 . f(1+(u-1)) (1-u) .
lim sup — 17 =172 . 172 lim sup o — /7. —1/2 0,
€ >0 (-9)" " (g(u)) (-£' (1)) €+ 0 (-u) ¢, "(g(w))

that is: the left hand side of (28) converges to zero as o~ 0. This

proves the lemma because the limit of the right hand side is > 0.

Proof of theorem 3. By lemma 4, there is a number e > 0 such that, if

;c &' is the curve ; def. {i:.IO <c

< ¢} and c € «;, then problem (1)8

0
- has an odd increasing equilibrium which is stable. Since by lemma 3 & is
,': ‘ open in e* there exists an open neighborhood W of ; in ¥ *  such that
A - .

for c €W problem (1) has a stable equilibrium u.. It is easy to see that

.i can be chosen so that u, is odd and increasing. In fact from the proof

» of lemma 3 it follows that for ¢ in a neighborhood of cEY, u. is the
‘ only equilibrium in a neighborhood of wu.. On the other hand the evenness
[ o] .




‘‘‘ "y C A T
B I R RC ) BRI et e e tete et s e T T N T TN T T TR T D T
B O e T T T,

-20-

of ¢ and the oddness of f imply that also Ve defined by vc(x) =

-uc(—x) is an equilibrium of (1). Since u_ 1is odd and u, +u_ as
c ¢

~

c+c also V. converges to ue as ¢ + c. This contradicts uniqueness
of u. unless u, is odd and therefore proves oddness. Since u, is

close to uc it vanishes only at x = 0. From this and the fact that
solutions of (4) with only one zero are monotone, it follows that u. is
increasing. The mapping cy ¢ is continuous as a map from (0,e) into
52*. Therefore Yy 1is locally compact as a subset of 2§+. Thus, by standard
arguments there is a continuous fﬁnction ¢ : (0,1) + £ such that the curve
vy = {cf[c = ¢(s), s € (0,1)} is contained in & and 50 is in the closure
of vy in i%. Since & is open and ¥ is continuously embedded in §§+,

ﬁ N¥ is open in ¥. From this and the continuity of ¢ it follows that
there is a subset W c:ﬁ n £ which is open and connected in % and contains

~

Y. Since 'Eo is in the closure of y in ¥ the proof is completed.

4. Secondary bifurcation

In this section we consider a family (¢ ) « % of diffusion functions
u u€[-1,1]
cu depending continuously on a parameter u. We let 6&6(up,a,x) dgf d(cu,a,x)
and assume that ¢ < ¢ for wu
M2 oM

k > 0. Then equation (8) implies that &(p,0,1) < kr for u < 0 and

2 > 2} and that 6(0,0,1) = kr for some

6(u,0,1) > kn. If we also assume that f satisfies the condition
(33) f(u) < £'(Qu u € (0,1],

then from (7)(8) it follows §&(p,a,l) < &6(u,0,1) for a # 0, u € [-1,1].

i Therefore Sy is empty for u < O, nonempty for u > 0. Thus u =0 is a
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bifurcation point. It is easy to see that in this situation, for u> 0

and small, Sy contains solutions that are small and converge to zero as
u+0, i.e., solutions that bifurcate from the zero solution. These solu-
tions are unstable for u small because the largest eigenvalue of problem
(13)with uz0 is f'(0) > 0 and the eigenvalues of (13) are continuous
functions of ¢ € & On the other hand we have seen in theorem 3 that if
c¢ 1is suitably chosen then there exist stable nonconstant equilibria of
(1). Therefore, it can be expected that, if uu is a continuous function

of u€[0,1] such that u, = 0, u, is a solution of (4) in Sk for

0
p € (0,1], and U is stable, some kind of secondary bifurcation takes
place at someyp € (0,1). This conjecture is true, we have in fact the
following.

Theorem 4. Suppose that <, is as before, f satisfies (33), u is an

equilibrium of (1)c which is equal to zero for u = 0, has exactly k
u

zeros for u€ (0,1], depends continuously on yu and u

1 is stable (in the

sense that the largest eigenvalue of the linearized problem at u, is

negative), then there exist numbers 0 < ¥y Ceee<ipy < 1 such that My

i=1,...,k is a bifurcation point.

def

Proof. Let au = uu(-l). Then a, = 0 and therefore (7},(8) imply

0
o(O,ao,l) = G(O,ao,l). We also have G(u,au,l) = kr for uw € (0,1], thus

by the continuity of & with respect to c,a and the continuity of cu,

u, with respect to u, it follows c(o,ao,l) = kn. On the other hand

Proposition 1 and the stability of wu, imply o(l,al,l) < 0. Therefore,

1
by continuity there exist 0 < My NIRRT 1 such that
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1,...,k.

[ S
[}

o(ui,au_,l) = (k-i)w
i

Moreover, it is obvious that His i=1,...,k can be chosen so that in
any neighborhood of. ¥y there erist u < Wy < 37 such that o(ﬁ}aﬁgl) >
(k-i)m > o(ﬁ,a=,1). This on the basis of the geometrical meaning of the
angle o implzes that My is a bifurcation point.

Theorem 4 says that going through k secondary bifurcations is a
necessary condition in order that an equilibrium with k zeros that bi-
furcates from the zero solution becomes stable. From the proof of the
theorem and Proposition 1 it follows that if, as yu goes from 0 to 1,
uv experiences exactly k bifurcations at‘ 0 < By € ety < 1 each one
of which is simple in the sense that at any u; two new solutions bifurcat-
ing from u appear, then u, is stable (see fig. 3 for the case k = 2).
This observation shows that in a certain sense the converse of theorem 4 is

also true.
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